Explore la modélisation des signaux neurobiologiques, en se concentrant sur les pics, la vitesse de tir, plusieurs neurones d'état, et l'estimation des paramètres.
Explore le traitement neurobiologique des signaux, couvrant la modélisation des pics, la classification des signaux et la caractérisation des données à l'aide de l'analyse des composantes principales.
Introduit des modèles de Markov cachés, expliquant les problèmes de base et les algorithmes comme Forward-Backward, Viterbi et Baum-Welch, en mettant laccent sur lattente-Maximisation.
Présente les chaînes de Markov, couvrant les bases, les algorithmes de génération et les applications dans les promenades aléatoires et les processus de Poisson.
Couvre les modèles stochastiques de communication, se concentrant sur les variables aléatoires, les chaînes Markov, les processus Poisson et les calculs de probabilité.
Explore la modélisation des signaux neurobiologiques avec les chaînes Markov, en mettant l'accent sur l'estimation des paramètres et la classification des données.