Explore l'apprentissage visuel sûr et efficace en matière de données pour la robotique, couvrant la théorie du contrôle, les systèmes de perception, l'apprentissage de bout en bout et les politiques d'experts.
Explore le défi de contrôle dans les systèmes robotiques souples et l'utilisation de modèles simplifiés avec théorie de contrôle non linéaire pour l'exécution dynamique des tâches.
Couvre les principes fondamentaux et l'analyse de stabilité des systèmes de contrôle en réseau, y compris l'installation de logiciels, les systèmes dynamiques, les états d'équilibre et les tests de stabilité.
Explore l'accessibilité et la contrôlabilité dans les systèmes de contrôle multivariables, en discutant des essais, des épreuves et de leurs implications.