S'oriente vers l'approximation du réseau neuronal, l'apprentissage supervisé, les défis de l'apprentissage à haute dimension et la révolution expérimentale de l'apprentissage profond.
Introduit les bases de la science des données, couvrant les arbres de décision, les progrès de l'apprentissage automatique et l'apprentissage par renforcement profond.
Présente les réseaux neuronaux convolutifs, en expliquant leur architecture, leur processus de formation et leurs applications dans les tâches de segmentation sémantique.
Explore la méthode de fonction aléatoire pour résoudre les PDE à l'aide d'algorithmes d'apprentissage automatique pour approximer efficacement les fonctions à haute dimension.
Explore l'apprentissage en apprentissage profond pour les véhicules autonomes, couvrant les modèles prédictifs, RNN, ImageNet, et l'apprentissage de transfert.
Introduit des fondamentaux d'apprentissage profond, couvrant les représentations de données, les réseaux neuronaux et les réseaux neuronaux convolutionnels.
Couvre les faits stylisés du rendement des actifs, des statistiques sommaires, des tests de la normalité, des placettes Q-Q et des hypothèses de marché efficaces.