Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore le compromis entre les variables de biais dans l'estimation des crêtes, montrant comment un peu de biais peut augmenter l'erreur carrée moyenne en réduisant la variance.
Couvre les modèles d'apprentissage statistique, la minimisation des risques et la minimisation empirique des risques avec des exemples d'estimateurs de probabilité maximale.
Explore l'ergodicité géométrique dans les chaînes de Markov et le biais et la variance des estimateurs, en mettant en évidence la quantification des pertes d'efficacité.
Se penche sur l'analyse de la consommation d'oxygène, couvrant la régression, l'interprétation des erreurs et l'application du modèle Michaelis-Menten.
Explore les outils de contrôle de la qualité dans l'analyse des données génomiques, en mettant l'accent sur les procédures robustes en présence d'objets aberrants et d'images.