Explore la prédiction linéaire, les filtres optimaux, les signaux aléatoires, la stationnarité, l'autocorrélation, la densité spectrale de puissance et la transformée de Fourier dans le traitement du signal.
Explore les fondamentaux du traitement des signaux, y compris les signaux de temps discrets, la factorisation spectrale et les processus stochastiques.
Explore la prédiction linéaire, les coefficients de prédiction, la minimisation de l'erreur quadratique moyenne et l'algorithme de Levinson-Durbin dans le traitement du signal.
Explore le filtrage du bruit, l'estimation du signal et l'optimisation du rapport signal sur bruit grâce au théorème de Wiener-Khintchine et à la densité spectrale de puissance.
Explore le traitement du signal neuronal pour les interfaces cerveau-ordinateur, y compris les techniques de décodage comme les filtres Kalman et le tri des pics.