Introduit les bases de la géométrie différentielle pour les courbes et les surfaces paramétriques, la courbure de couverture, les vecteurs tangents et l'optimisation des surfaces.
Explore les surfaces minimales, la courbure, l'opérateur Laplace-Beltrami, les solutions numériques, le lissage laplacien, le flux de diffusion et l'intégration du temps.
Explore les propriétés géométriques des paraboles et des hyperboloïdes en architecture, en mettant l'accent sur leurs implications de conception et leurs applications pratiques.
Explore la géométrie différentielle des surfaces paramétriques, couvrant l'espace tangent, la courbure normale, les courbures principales et les courbes asymptotiques.
Explore les surfaces minimales, leurs propriétés, leur histoire, leur classification basée sur la courbure, et des exemples de la Galerie des Surfaces Minimales.
Couvre les fondamentaux de la géométrie différentielle des surfaces, y compris l'équilibre des coquilles, des récipients sous pression, et la courbure des surfaces.
Déplacez-vous dans les principes géométriques de l'architecture gothique, en mettant l'accent sur les techniques de courbure de surface et de stéréotomie.
Couvre les théories linéaires et membranaires des récipients sous pression, la géométrie différentielle des surfaces et la réduction de la dimensionnalité de la 3D à la 2D.