Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Plongez dans les bases de l'apprentissage par renforcement, en discutant des états, des actions, des récompenses, des politiques et des applications de réseaux neuronaux.
Déplacez-vous dans la construction d'ensembles robustes grâce à l'augmentation de la marge pour améliorer la défense contradictoire dans les modèles d'apprentissage automatique.
Introduit des réseaux neuronaux convolutifs, couvrant les couches entièrement connectées, les convolutions, la mise en commun, les traductions PyTorch et des applications telles que l'estimation de pose à la main et l'estimation de tubalité.
Explore les réseaux neuronaux convolutifs, l'augmentation des données, la dégradation du poids et le décrochage pour améliorer les performances du modèle.
Explore l'apprentissage automatique des droits de l'homme, en mettant l'accent sur la définition des objectifs, le traitement des faux positifs et négatifs, et en assurant la transparence et la confiance.
Explore l'intersection de l'apprentissage automatique et de la vie privée, en discutant de la confidentialité, des attaques, de la vie privée différentielle et des compromis dans l'apprentissage fédéré.