Explore la géométrie différentielle des surfaces paramétriques, couvrant l'espace tangent, la courbure normale, les courbures principales et les courbes asymptotiques.
Couvre les théories linéaires et membranaires des récipients sous pression, la géométrie différentielle des surfaces et la réduction de la dimensionnalité de la 3D à la 2D.
Explore les propriétés géométriques des paraboles et des hyperboloïdes en architecture, en mettant l'accent sur leurs implications de conception et leurs applications pratiques.
Explore la dérivée des longueurs de courbe, des déformations à extrémité fixe, des géodésiques, des typologies de points de surface et de la paramétrisation de sphère.
Couvre les propriétés géométriques des paraboles hyperboliques et des hyperboloïdes, en se concentrant sur leurs caractéristiques de construction et de courbure.