Couvre l'environnement informatique pour les exercices de dynamique moléculaire et de Monte Carlo, en mettant l'accent sur la compréhension théorique plutôt que sur les compétences de codage.
Explore des méthodes numériques stochastiques efficaces pour la modélisation et l'apprentissage, couvrant des sujets comme le moteur d'analyse et les inhibiteurs de la kinase.
Couvre les méthodes de calcul des systèmes moléculaires à température finie, en mettant l'accent sur l'échantillonnage stochastique et les simulations d'évolution du temps.
Explore les mouvements de Monte Carlo en simulation, y compris les mouvements d'essai et les mouvements biaisés, en comparant Monte Carlo avec la dynamique moléculaire.
Couvre la théorie et les applications pratiques des simulations de pliage de protéines en utilisant la dynamique moléculaire, en se concentrant sur les effets des solvants et l'analyse de la dynamique de pliage.
Couvre la simulation MD de la miniprotéine Trp-cage, en mettant l'accent sur la modélisation implicite des solvants et l'analyse pratique des résultats de simulation.
Explore les surfaces d'énergie potentielles dans les simulations de dynamique moléculaire et l'utilisation de méthodes mécaniques quantiques / moléculaires mixtes.