Déplacez-vous dans la bijection entre les applications linéaires et les matrices, explorant la linéarité, l'injectivité, la surjectivité et les conséquences de cette relation.
Explore les transformations linéaires, les matrices, les propriétés surjectives, injectables et bijectives, les transformations symétriques et l'équivalence matricielle.
Couvre la solution générale des équations différentielles inhomogènes et explore la dépendance linéaire, les théorèmes dunicité et les équations de second ordre.
Explore la définition et les propriétés des applications linéaires, en mettant l'accent sur l'injectivité, la surjectivité, le noyau et l'image, en mettant l'accent sur les matrices.