Explore les surfaces minimales, la courbure, l'opérateur Laplace-Beltrami, les solutions numériques, le lissage laplacien, le flux de diffusion et l'intégration du temps.
Explore les courbes dans le plan orienté, en discutant de l'orientation, des espaces vectoriels, des relations d'équivalence et de la courbure des courbes régulières.
Explore la théorie de la contrainte finie et de la rotation dans les tiges de Kirchhoff, couvrant les souches inextensibles, les rotations finies et l'équilibre.
Couvre les théories linéaires et membranaires des récipients sous pression, la géométrie différentielle des surfaces et la réduction de la dimensionnalité de la 3D à la 2D.
Couvre la symétrie dans la géométrie moderne, les réflexions, les traductions, les rotations, les compositions d'isomères, les théorèmes fondamentaux, les configurations de lignes et de plans, et l'analyse de surface.