Couvre la théorie et les applications de la coloration graphique, en se concentrant sur les modèles de blocs stochastiques dissortatifs et la coloration plantée.
Explore l'intégration Monte-Carlo pour approximer les attentes et les variances à l'aide d'échantillonnage aléatoire et discute des composants d'erreur dans les modèles de choix conditionnel.
Explore explicitement les méthodes de Runge-Kutta stabilisées et leur application aux problèmes inverses bayésiens, couvrant l'optimisation, l'échantillonnage et les expériences numériques.
Explorer la densité de calcul des états et l'inférence bayésienne à l'aide d'un échantillonnage d'importance, montrant une variance inférieure et la parallélisation de la méthode proposée.