Explore la propagation de la croyance dans les modèles graphiques, les graphiques de facteurs, les exemples de verre de spin, les distributions de Boltzmann et les propriétés de coloration des graphiques.
Couvre les propriétés stochastiques, les structures du réseau, les modèles, les statistiques, les mesures de centralité et les méthodes d'échantillonnage dans l'analyse des données du réseau.
Explore la théorie des graphes, les matrices stochastiques, les algorithmes de consensus et les propriétés spectrales dans les systèmes de contrôle en réseau.
Couvre la preuve du théorème ARV de Bourgain, en se concentrant sur lensemble fini de points dans un espace semi-métrique et lapplication de lalgorithme ARV pour trouver la coupe la plus clairsemée dans un graphique.