Séance de cours

Méthode de régression linéaire et des moindres carrés

Séances de cours associées (36)
Régression linéaire : bases et applications
Explore la régression linéaire en utilisant la méthode des moindres carrés pour adapter les points de données à l'équation y = ax + b.
Régression linéaire : bases et estimation
Couvre les bases de la régression linéaire et la façon de résoudre les problèmes d'estimation en utilisant les moindres carrés et la notation matricielle.
Régression linéaire : Inférence statistique et régularisation
Couvre le modèle probabiliste de régression linéaire et l'importance des techniques de régularisation.
Modèles probabilistes pour la régression linéaire
Couvre le modèle probabiliste de régression linéaire et ses applications dans la résonance magnétique nucléaire et l'imagerie par rayons X.
Régression: Linéaire simple et multiple
Couvre la régression linéaire simple et multiple, y compris l'estimation des moindres carrés et le diagnostic du modèle.
Apprentissage supervisé : Régression linéaire
Couvre l'apprentissage supervisé en mettant l'accent sur la régression linéaire, y compris des sujets comme la classification numérique, la détection des pourriels et la prédiction de la vitesse du vent.
Régression linéaire probabiliste
Examine la régression probabiliste linéaire, couvrant les probabilités articulaires et conditionnelles, la régression des crêtes et l'atténuation excessive.
Régression linéaire : Régression
Couvre la régression linéaire, la régularisation et les modèles probabilistes dans la génération d'étiquettes.
Régression linéaire : Fondements et applications
Explore les fondamentaux de la régression linéaire, la formation des modèles, l'évaluation et les mesures du rendement, en soulignant l'importance de la R2, du MSE et de l'EAM.
Régression : Modèles linéaires
Explore la régression linéaire, les moindres carrés, les résidus et les intervalles de confiance dans les modèles de régression.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.