Explore l'estimation des erreurs dans les méthodes numériques pour résoudre les équations différentielles ordinaires, en mettant l'accent sur l'impact des erreurs sur la précision et la stabilité de la solution.
Introduit la méthode de différence finie pour l'approximation des dérivés et la résolution des équations différentielles dans les applications pratiques.
Explore des méthodes numériques telles que Crank-Nicolson, Heun, Euler et RK4 pour résoudre les ODE, en mettant l'accent sur l'estimation des erreurs et la convergence.
Couvre les méthodes numériques pour résoudre les problèmes de valeurs limites en utilisant des méthodes de différence finie, de FFT et d'éléments finis.