Explore le défi de contrôle dans les systèmes robotiques souples et l'utilisation de modèles simplifiés avec théorie de contrôle non linéaire pour l'exécution dynamique des tâches.
Explore les processus stochastiques contrôlés, en se concentrant sur l'analyse, le comportement et l'optimisation, en utilisant la programmation dynamique pour résoudre les problèmes du monde réel.
Explore la théorie du contrôle quadratique optimal linéaire, couvrant les problèmes FH-LQ et IH-LQ et l'importance de l'observabilité dans les systèmes de contrôle.
Explore l'apprentissage et le contrôle des systèmes complexes, en abordant les défis et les possibilités en matière de technologie et de recherche interdisciplinaire.
Explore l'apprentissage sécuritaire en robotique, couvrant l'état de l'art, les défis ouverts et la vision sur le terrain, soulignant l'importance de la collaboration interdisciplinaire.
Couvre les principes fondamentaux de la théorie du contrôle optimal, en se concentrant sur la définition des OCP, l'existence de solutions, les critères de performance, les contraintes physiques et le principe d'optimalité.