Couvre la classification des images, le clustering et les techniques d'apprentissage automatique telles que la réduction de la dimensionnalité et l'apprentissage par renforcement.
Explore les techniques de regroupement de comportement et de réduction de dimensionnalité non supervisées, couvrant des algorithmes comme K-Means, DBSCAN et Gaussian Mixture Model.
Explore l'analyse des signaux EMG, les modèles de mélange, les modèles gaussiens et le tri des pics dans le traitement des signaux neuraux à l'aide de PCA.