Clustering gaussien de mélange : algorithmes d'expectation-maximisation
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Couvre les techniques de réduction de dimensionnalité, de regroupement et d'estimation de la densité, y compris l'ACP, les moyennes K, le MGM et le décalage moyen.
Introduit des méthodes de regroupement fondées sur des modèles utilisant des modèles de mélange et des variables latentes, avec des exemples pratiques sur les données d'iris.
Comparer les algorithmes K-Means et Spectral Clustering, en mettant en évidence leurs différences et leurs applications pratiques dans le regroupement des comportements des élèves.
Introduit des techniques de clustering d'apprentissage automatique non supervisées telles que K-means, Gaussian Mixture Models et DBSCAN, expliquant leurs algorithmes et leurs applications.
Couvre l'algorithme de maximisation des attentes et les techniques de regroupement, en mettant l'accent sur l'échantillonnage Gibbs et l'équilibre détaillé.
Introduit un mini-projet où les étudiants prédisent les précipitations à Pully en utilisant l'apprentissage automatique, en mettant l'accent sur la reproductibilité et la qualité du code.