Explore la stabilité des équations différentielles ordinaires, en se concentrant sur la dépendance des solutions, les données critiques, la linéarisation et le contrôle des systèmes non linéaires.
Fournit un examen des concepts d'algèbre linéaire cruciaux pour l'optimisation convexe, couvrant des sujets tels que les normes vectorielles, les valeurs propres et les matrices semi-définies positives.
Couvre les principes fondamentaux et l'analyse de stabilité des systèmes de contrôle en réseau, y compris l'installation de logiciels, les systèmes dynamiques, les états d'équilibre et les tests de stabilité.
Explore les conditions KKT dans l'optimisation convexe, couvrant les problèmes doubles, les contraintes logarithmiques, les moindres carrés, les fonctions matricielles et la sous-optimalité de la couverture des ellipsoïdes.
Couvre la stabilité de Lyapunov dans les systèmes dynamiques, en se concentrant sur la stabilité asymptotique globale et la mise en œuvre pratique grâce à une programmation semi-définie.
Explore l'optimisation Conjugate Gradient, couvrant les cas quadratiques et non linéaires, les conditions Wolfe, BFGS, les algorithmes CG et la symétrie matricielle.
Explore les défis et les possibilités dans les systèmes de contrôle en réseau, couvrant les systèmes LTI, les retards, les chutes de paquets et le consensus.