Contrôle LQ Infinite-Horizon : Solution et exemple
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explorer le modèle non linéaire en temps réel Contrôle prédictif pour les systèmes mécatroniques rapides et ses applications dans le contrôle des fusées, le stationnement autonome et la course.
Explore l'estimation de l'état et le filtrage Kalman pour les systèmes de commande multivariables, avec des applications dans les canaux de communication et la navigation du véhicule.
Introduit une théorie de contrôle optimale, couvrant les modèles, la discrétisation, les mesures, les conditions lagrangiennes, KKT et l'invertibilité.
Explore les modèles de contrôle prédictif avec des MFD multi-régions dans la modélisation des flux de trafic et discute de l'impact de l'hétérogénéité sur les stratégies de contrôle.
Introduit une conception LQR distribuée sous-optimale pour les systèmes couplés physiquement avec des garanties de stabilité et des comparaisons de simulation.
Couvre le modèle de contrôle prédictif pour les diagrammes fondamentaux macroscopiques multi-régions dans la modélisation du flux de trafic et son application dans la gestion des problèmes de contrôle non linéaire.
Introduit le contrôle prédictif (DEEPC) activé par les données comme méthode de conception des contrôleurs directement à partir des données d'entrée/sortie mesurées, réduisant ainsi le coût de conception et de mise en service.