Processus intégrés et saisonniers : séries chronologiques
Séances de cours associées (51)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Couvre les propriétés stochastiques des séries temporelles, de la stationnarité, de l'autocovariance, des processus stochastiques spéciaux, de la densité spectrale, des filtres numériques, des techniques d'estimation, du contrôle des modèles, de la prévision et des modèles avancés.
Couvre l'identification et la spécification du modèle dans l'analyse des séries chronologiques, y compris les modèles d'EI et l'estimation des moindres carrés.
Couvre les techniques d'estimation spectrale comme la réduction et l'estimation paramétrique, en soulignant l'importance des modèles AR et la probabilité de Whittle dans l'analyse des séries chronologiques.
Couvre l'estimation spectrale dans l'analyse des séries chronologiques, y compris les noyaux d'imagerie, les méthodes de compression et les modèles AR.
Couvre l'analyse et la modélisation des séries chronologiques univariées, en mettant l'accent sur la stationnarité, les processus ARMA et la prévision.
Couvre la modélisation structurale, le filtre Kalman, la stationnarité, les méthodes d'estimation, la prévision et les modèles ARCH dans les séries chronologiques.
Couvre les modèles de données de comptage et la régression de Poisson, puis les transitions vers une analyse univariée des séries chronologiques pour la prévision des variables économiques.