Explore les composants fortement connectés et les digraphes de condensation dans les systèmes de contrôle en réseau, démontrant leurs implications pratiques.
Explore le taux de convergence dans les systèmes de contrôle en réseau et le consensus dans les digrammes, en mettant l'accent sur les défis du calcul Pess (A) et de l'attribution de poids.
Couvre les concepts d'homéomorphismes locaux et de couvertures en multiples, en mettant l'accent sur les conditions dans lesquelles une carte est considérée comme un homéomorphisme local ou une couverture.
Explore la convergence des puissances de la matrice d'adjacence et du théorème de consensus pour les matrices primitives et stochastiques, en mettant l'accent sur les propriétés spectrales et les systèmes de contrôle en réseau.
Explore le rôle des graphiques dans l'apprentissage en profondeur, en se concentrant sur leur structure, leurs applications et leurs techniques de traitement des données graphiques.