Couvre la convergence des méthodes de points fixes pour les équations non linéaires, y compris les théorèmes de convergence globale et locale et lordre de convergence.
Couvre les méthodes itératives pour résoudre des équations linéaires et analyser la convergence, y compris le contrôle des erreurs et les matrices définies positives.
Explore l'analyse de convergence de la méthode de Newton pour résoudre les équations non linéaires, en discutant des propriétés de convergence linéaire et quadratique.
Explore l'estimation des erreurs a priori dans la méthode des éléments finis, couvrant l'analyse de convergence, l'orthogonalité, les formulations faibles et la précision optimale.
Couvre les propriétés des espaces complets, y compris l'exhaustivité, les attentes, les incorporations, les sous-ensembles, les normes, l'inégalité de Holder et l'intégrabilité uniforme.
Explore l'intégrabilité uniforme, les théorèmes de convergence et l'importance des séquences bornées dans la compréhension de la convergence des variables aléatoires.