Introduit l'optimisation convexe, couvrant les ensembles convexes, les concepts de solution et les méthodes numériques efficaces en optimisation mathématique.
Introduit l'optimisation convexe à travers des ensembles et des fonctions, couvrant les intersections, exemples, opérations, gradient, Hessian, et applications du monde réel.
Explore les résultats élémentaires en optimisation convexe, y compris les coques affines, convexes et coniques, les cônes appropriés et les fonctions convexes.
Couvre les concepts essentiels de l'algèbre linéaire pour l'optimisation convexe, y compris les normes vectorielles, la décomposition des valeurs propres et les propriétés matricielles.
Couvre l'approche de programmation linéaire de l'apprentissage par renforcement, en se concentrant sur ses applications et ses avantages dans la résolution des processus décisionnels de Markov.