Explore la stabilité zéro et la stabilité absolue dans les méthodes numériques, y compris Forward Euler, Backward Euler, Crank-Nicolson, et les méthodes Heun.
Explore l'estimation des erreurs dans les méthodes numériques pour résoudre les équations différentielles ordinaires, en mettant l'accent sur l'impact des erreurs sur la précision et la stabilité de la solution.
Explore explicitement les méthodes de Runge-Kutta stabilisées et leur application aux problèmes inverses bayésiens, couvrant l'optimisation, l'échantillonnage et les expériences numériques.
Discute de la rétroaction de l'évaluation, de la convergence, de l'analyse des erreurs et des étapes temporelles adaptatives dans les simulations physiques.
Couvre les méthodes itératives pour résoudre des équations linéaires et analyser la convergence, y compris le contrôle des erreurs et les matrices définies positives.
Explore l'analyse des flux non confinés en géomécanique, en mettant l'accent sur les méthodes itératives de solution et les considérations relatives à l'état des limites.