Copulas et marges: dépendance extrême dans les statistiques
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Couvre la méthode des moments pour estimer les paramètres et construire des intervalles de confiance basés sur des moments empiriques correspondant à des moments de distribution.
Explore la distribution de Wishart, les propriétés des matrices de Wishart, et la distribution de T2 de Hotelling, y compris la statistique T2 de deux exemples Hotelling.
Explore l'inférence bayésienne pour les variables aléatoires gaussiennes, couvrant la distribution articulaire, les pdf marginaux et le classificateur Bayes.
Explore la dépendance, la corrélation et les attentes conditionnelles en matière de probabilité et de statistiques, en soulignant leur importance et leurs limites.
Couvre les copules, le théorème de Sklar, les méta distributions et diverses mesures de dépendance comme les corrélations de rang et les coefficients de dépendance de la queue.
Explorer l'analyse de la pollution atmosphérique à l'aide de données sur le vent, de distributions de probabilités et de modèles de trajectoire pour l'évaluation de la qualité de l'air.