Couvre le concept de cohomologie de groupe, se concentrant sur les complexes de chaîne, les complexes de cochain, les produits de tasse et les anneaux de groupe.
Démontre l'équivalence entre l'homologie simpliciale et singulière, prouvant les isomorphismes pour les complexes s finis et discutant de longues séquences exactes.
Explore l'invariance de l'homotopie et son application à des groupes d'homologie de quotients, mettant en valeur l'isomorphisme et l'homotopie en chaîne.
Couvre l'homologie avec les coefficients, introduisant le concept de définition des groupes d'homologie par rapport aux groupes abélisques arbitraires.
Couvre les premières propriétés de l'homologie singulière et la préservation des composants de décomposition et de chemin connectés dans les espaces topologiques.