Discute de la géométrie des moindres carrés, en explorant les perspectives des lignes et des colonnes, les hyperplans, les projections, les résidus et les vecteurs uniques.
Couvre les diagnostics de régression pour les modèles linéaires, en soulignant limportance de vérifier les hypothèses et didentifier les valeurs aberrantes et les observations influentes.
Introduit une régression linéaire simple, les propriétés des résidus, la décomposition de la variance et le coefficient de détermination dans le contexte de la loi d'Okun.
Explore l'inférence statistique pour les modèles linéaires, couvrant l'ajustement du modèle, l'estimation des paramètres et la décomposition de la variance.
Explore les techniques avancées de modélisation à plusieurs niveaux, y compris l'adaptation de modèles distincts, l'estimation des coefficients et la vérification des résidus pour l'évaluation des modèles.