Explore les courbes dans le plan orienté, en discutant de l'orientation, des espaces vectoriels, des relations d'équivalence et de la courbure des courbes régulières.
Introduit les bases de la géométrie différentielle pour les courbes et les surfaces paramétriques, la courbure de couverture, les vecteurs tangents et l'optimisation des surfaces.
Couvre les concepts d'homéomorphismes locaux et de couvertures en multiples, en mettant l'accent sur les conditions dans lesquelles une carte est considérée comme un homéomorphisme local ou une couverture.
Explore la linéarité des espaces tangents, la définition des vecteurs tangents sans un espace d'intégration et leurs opérations, ainsi que l'équivalence des différentes notions d'espace tangents.
Explore le calcul de longueur d'arc pour les courbes et les polygones inscrits dans des cercles en utilisant la trigonométrie et les équations paramétriques.