Explore la dualité lagrangienne dans l'optimisation convexe, en discutant de la dualité forte, des solutions duales et des applications pratiques dans les programmes de cônes de second ordre.
Explore les résultats élémentaires en optimisation convexe, y compris les coques affines, convexes et coniques, les cônes appropriés et les fonctions convexes.
Discute des techniques d'optimisation dans l'apprentissage automatique, en se concentrant sur la descente de gradient stochastique et ses applications dans les problèmes contraints et non convexes.
Couvre des exercices sur l'optimisation convexe, en se concentrant sur la formulation et la résolution de problèmes d'optimisation en utilisant YALMIP et des solveurs comme GUROBI et MOSEK.
Explore les sous-gradients dans les fonctions convexes, mettant l'accent sur les scénarios et les propriétés des subdifférentiels non dissociables mais convexes.