Couvre les paradigmes algorithmiques pour les problèmes de graphique dynamique, y compris la connectivité dynamique, la décomposition de l'expansion et le regroupement local, brisant les barrières dans les problèmes de connectivité k-vertex.
Couvre les tests d'identité polynomiale à l'aide d'oracles et d'évaluations ponctuelles aléatoires, avec des applications dans la théorie des graphes et les aspects algorithmiques.
Présente la structure de données Union-Find et l'algorithme de Prim pour un minimum d'arbres couvrants dans les graphiques, explorant les coupes et les origines historiques.
Couvre la preuve du théorème ARV de Bourgain, en se concentrant sur lensemble fini de points dans un espace semi-métrique et lapplication de lalgorithme ARV pour trouver la coupe la plus clairsemée dans un graphique.