Couvre les modèles linéaires, la régression logistique, les limites de décision, k-NN, et les applications pratiques dans l'attribution des auteurs et l'analyse des données d'image.
Explore l'apprentissage supervisé en économétrie financière, en mettant l'accent sur les algorithmes de classification comme Naive Bayes et la régression logistique.
S'insère dans le compromis entre la flexibilité du modèle et la variation des biais dans la décomposition des erreurs, la régression polynomiale, le KNN, et la malédiction de la dimensionnalité.
Explore les modèles linéaires, la régression logistique, la descente en gradient et la régression logistique multi-classes avec des applications pratiques et des exemples.
Explore le surajustement, la validation croisée et la régularisation dans l'apprentissage automatique, en mettant l'accent sur la complexité du modèle et l'importance de la force de régularisation.
Explore la méthode de classification la plus proche du voisin, en discutant de ses limites dans les espaces de grande dimension et de l'importance de la corrélation spatiale pour des prédictions efficaces.