Explore la stabilité transitoire dans la dynamique des systèmes de puissance, couvrant les équations algébriques, les modèles de générateurs et les techniques d'intégration numérique.
Couvre les bases des simulations de dynamique moléculaire, des propriétés d'ensemble, des formulations de mécanique classique, de l'intégration numérique, de la conservation de l'énergie et des algorithmes de contrainte.
Explore les simulations de dynamique moléculaire sous des contraintes holonomiques, en se concentrant sur l'intégration numérique et la formulation d'algorithmes.
Explore la conservation de l'énergie dans les systèmes hamiltoniens, l'intégration numérique, les choix de pas temporels et les algorithmes de contraintes dans les simulations de dynamique moléculaire.
Couvre les bases de l'analyse numérique et des méthodes de calcul utilisant Python, en se concentrant sur les algorithmes et les applications pratiques en mathématiques.
Explore les méthodes de différenciation et d'intégration numériques, en mettant l'accent sur la précision des différences finies dans le calcul des dérivées et des intégrales.