Introduit la nécessité d'un cadre mathématique pour décrire les opérateurs linéaires sur les espaces de Hilbert de dimension infinie en mécanique quantique.
Couvre les espaces normés, les espaces doubles, les espaces de Banach, les espaces de Hilbert, la convergence faible et forte, les espaces réflexifs et le théorème de Hahn-Banach.
Couvre les concepts fondamentaux des opérateurs non liés en physique quantique, en se concentrant sur la définition d'un calcul fonctionnel et la décomposition spectrale.