Introduit la programmation dynamique, en se concentrant sur l'économie de calcul en se souvenant des calculs précédents et en l'appliquant pour résoudre efficacement les problèmes d'optimisation.
Explore les conditions KKT dans l'optimisation convexe, couvrant les problèmes doubles, les contraintes logarithmiques, les moindres carrés, les fonctions matricielles et la sous-optimalité de la couverture des ellipsoïdes.
Couvre les techniques d'optimisation dans l'apprentissage automatique, en se concentrant sur la convexité et ses implications pour une résolution efficace des problèmes.