Couvre l'apprentissage supervisé en mettant l'accent sur la régression linéaire, y compris des sujets comme la classification numérique, la détection des pourriels et la prédiction de la vitesse du vent.
Couvre les méthodes d'interpolation déterministe globale et locale dans les systèmes d'information géographique, en discutant des connaissances spécialisées, de la sélection des méthodes et de l'estimation de l'incertitude.
Explore les fondamentaux de la régression linéaire, la formation des modèles, l'évaluation et les mesures du rendement, en soulignant l'importance de la R2, du MSE et de l'EAM.
Couvre la régression linéaire et pondérée, les paramètres optimaux, les solutions locales, l'application SVR et la sensibilité des techniques de régression.