Explore les méthodes d'estimation du spectre paramétrique, y compris les spectres linéaires et lisses, et se penche sur l'analyse de la variabilité de la fréquence cardiaque.
Explore la modélisation des signaux neurobiologiques avec les chaînes Markov, en mettant l'accent sur l'estimation des paramètres et la classification des données.
Discute des méthodes d'estimation en probabilité et en statistiques, en se concentrant sur l'estimation du maximum de vraisemblance et les intervalles de confiance.
Couvre les concepts de lunettes de spin et d'estimation bayésienne, en se concentrant sur l'observation et la déduction de l'information d'un système de près.
Introduit une estimation de vraisemblance maximale en économétrie, couvrant les principes, les propriétés, les applications et les tests de spécification.