Couvre le caractère unique des solutions dans les équations différentielles, en se concentrant sur le théorème de Cauchy-Lipschitz et ses implications pour les solutions locales et globales.
Couvre le concept d'intervalles dans Rn en utilisant des boules géométriques et définit des ensembles ouverts et fermés, des points intérieurs, des limites, des fermetures, des domaines délimités et des ensembles compacts.