Introduit des rétractions et des champs vectoriels sur les collecteurs, fournissant des exemples et discutant des propriétés de douceur et d'extension.
Introduit des champs vectoriels différenciés le long de courbes sur des collecteurs avec des connexions et l'opérateur unique satisfaisant des propriétés spécifiques.
Couvre la définition de la rétraction, des sous-groupes ouverts, des fonctions de définition locales, des espaces tangents et des métriques riemanniennes.
Couvre les concepts d'homéomorphismes locaux et de couvertures en multiples, en mettant l'accent sur les conditions dans lesquelles une carte est considérée comme un homéomorphisme local ou une couverture.
Explore la linéarité des espaces tangents, la définition des vecteurs tangents sans un espace d'intégration et leurs opérations, ainsi que l'équivalence des différentes notions d'espace tangents.
Se transforme en vecteurs tangents en classes d'équivalence sur des collecteurs, mettant en évidence leur nature abstraite et leur rôle dans l'optimisation.
Introduit Manopt, une boîte à outils pour l'optimisation sur les manifolds, couvrant le gradient et les contrôles hessiens, les appels de solveur et la mise en cache manuelle.