Explique le processus de recherche d'une solution réalisable de base initiale pour les problèmes d'optimisation linéaire à l'aide de l'algorithme Simplex.
Couvre la modélisation et l'optimisation des systèmes énergétiques, en se concentrant sur la résolution de problèmes d'optimisation avec des contraintes et des variables.
Couvre les concepts fondamentaux de l'optimisation et de la recherche opérationnelle, en explorant des exemples du monde réel et des sujets clés sur un semestre.
Couvre l'approche de programmation linéaire de l'apprentissage par renforcement, en se concentrant sur ses applications et ses avantages dans la résolution des processus décisionnels de Markov.
Explore la somme des polynômes carrés et la programmation semi-définie dans l'optimisation polynomiale, permettant l'approximation des polynômes non convexes avec SDP convexe.
Explore les méthodes d'optimisation dans l'apprentissage automatique, en mettant l'accent sur les gradients, les coûts et les efforts informatiques pour une formation efficace des modèles.