Couvre l'apprentissage et le contrôle adaptatif des robots, en mettant l'accent sur la réactivité en temps réel et la planification de parcours à l'aide de systèmes dynamiques.
Explore les robots d'entraînement en renforçant l'apprentissage et l'apprentissage de la démonstration, mettant en évidence les défis de l'interaction homme-robot et de la collecte de données.
Explore l'injection de perturbations bayésiennes pour une imitation robuste dans l'apprentissage des robots, démontrant son efficacité dans la réduction de l'accumulation d'erreurs et la réalisation de tâches élevées.
Présente une architecture nouvelle pour l'apprentissage robot de l'interaction haptique, la réalisation d'une estimation robuste de la classe d'objets et l'amélioration de l'efficacité de l'interaction haptique.
Explore les progrès de l'apprentissage robot pour l'autonomie à l'échelle, couvrant les défis de l'apprentissage profond, l'architecture efficace, les résultats d'analyse comparative et les implications sociétales.
Explore le contrôle conforme pour les robots par impédance et rigidité variable, permettant des interactions sûres et adaptatives avec l'environnement.
Explore le transfert des principes d'apprentissage humain aux robots, en mettant l'accent sur la manipulation de l'apprentissage des compétences et la planification des tâches.
Introduit les bases de la robotique, couvrant les définitions, les classifications et les statistiques, et explore l'évolution et les applications de différents types de robots.
Explore la coopération des robots d'assistance à l'amélioration de la productivité des soins infirmiers et à la création d'une société dynamique d'ici 2050.