Explore les méthodes de différenciation et d'intégration numériques, en mettant l'accent sur la précision des différences finies dans le calcul des dérivées et des intégrales.
Discute de l'application des méthodes de Monte Carlo dans l'analyse du rayonnement thermique, en se concentrant sur les fonctions de probabilité et les techniques d'intégration numérique.
Couvre les techniques d'intégration numérique, en se concentrant sur les formules en quadrature composite et leurs applications pour l'approximation des intégrales avec une précision améliorée.
Discute des méthodes numériques, en se concentrant sur les critères d'arrêt, SciPy pour l'optimisation et la visualisation des données avec Matplotlib.
Couvre les bases de la géomécanique computationnelle, y compris la poroélasticité, la plasticité et les méthodes numériques pour résoudre les problèmes géotechniques.
Couvre l'interpolation de Lagrange et son application dans les techniques d'intégration numérique, en se concentrant à la fois sur les méthodes non composites et composites de quadrature.