Couvre l'apprentissage non supervisé axé sur les méthodes de regroupement et les défis rencontrés dans les algorithmes de regroupement comme K-means et DBSCAN.
Explore la dépendance, la corrélation et les attentes conditionnelles en matière de probabilité et de statistiques, en soulignant leur importance et leurs limites.
Couvre PCA et LDA pour la réduction de dimensionnalité, expliquant la maximisation de la variance, les problèmes de vecteurs propres et les avantages de Kernel PCA pour les données non linéaires.
Explore la formation, l'optimisation et les considérations environnementales des réseaux neuronaux, avec des informations sur les clusters PCA et K-means.
Explore PCA et LDA pour la réduction de dimensionnalité linéaire dans les données, en mettant l'accent sur les techniques de clustering et de séparation de classe.
Couvre l'analyse des composantes principales pour l'estimation de la forme de la courbe de rendement et la réduction des dimensions dans les modèles de taux d'intérêt.
Explore les techniques d'apprentissage non supervisées pour réduire les dimensions des données, en mettant l'accent sur l'APC, l'ADL et l'APC du noyau.