Explore l'approche de distribution quasi-stationnaire dans la modélisation de la dynamique moléculaire, couvrant la dynamique de Langevin, la métastabilité et les modèles cinétiques de Monte Carlo.
Explore les mouvements de Monte Carlo en simulation, y compris les mouvements d'essai et les mouvements biaisés, en comparant Monte Carlo avec la dynamique moléculaire.
Couvre la théorie de l'échantillonnage de Markov Chain Monte Carlo (MCMC) et discute des conditions de convergence, du choix de la matrice de transition et de l'évolution de la distribution cible.
Explore l'intégration Monte-Carlo pour approximer les attentes et les variances à l'aide d'échantillonnage aléatoire et discute des composants d'erreur dans les modèles de choix conditionnel.
Couvre les méthodes d'échantillonnage Hypercube latin et de quasi Monte Carlo pour la simulation stochastique, expliquant l'objectif de la stratification et générant des permutations indépendantes.
Explore les modèles de mélange, y compris les mélanges discrets et continus, et leur application dans la capture de l'hétérogénéité du goût dans les populations.
Couvre l'environnement informatique pour les exercices de dynamique moléculaire et de Monte Carlo, en mettant l'accent sur la compréhension théorique plutôt que sur les compétences de codage.