Couvre les méthodes de recherche de racines, en se concentrant sur les techniques de bisection et de sécante, leurs implémentations et les comparaisons de leurs taux de convergence.
Couvre la méthode de bisection pour approximer les zéros de fonctions, en discutant des avantages, des inconvénients et d'une approche alternative pour une convergence plus rapide.
Couvre les méthodes de résolution d'équations non linéaires, y compris les méthodes de bisection et de Newton-Raphson, en mettant l'accent sur les critères de convergence et d'erreur.
Explore l'analyse numérique des équations non linéaires, en mettant l'accent sur les critères de convergence et les méthodes comme la bisection et l'itération à point fixe.