Explore les équations différentielles stochastiques avec des exemples comme le mouvement brownien et les processus carré-root, en discutant de leur relation avec les équations différentielles partielles.
Explore les schémas implicites dans l'analyse numérique, en mettant l'accent sur les propriétés de stabilité et de convergence dans la résolution des équations différentielles.
Explore la dimension Hausdorff et son application au mouvement brownien, en soulignant l'importance de comprendre les dimensions définies dans les processus stochastiques.