Introduit l'optimisation convexe, couvrant les ensembles convexes, les concepts de solution et les méthodes numériques efficaces en optimisation mathématique.
Explore la dynamique des débits réguliers d'Euler sur les collecteurs Riemanniens, couvrant les fluides idéaux, les équations d'Euler, les débits eulérisables et les obstacles à l'exposition des bouchons.
Explore les fonctions convexes, les transformations d'affines, le maximum pointu, la minimisation, le Lemma de Schur et l'entropie relative dans l'optimisation mathématique.
Explore la dualité conjuguée dans l'optimisation convexe, couvrant les hyperplans faibles et soutenants, les sous-gradients, l'écart de dualité et les conditions de dualité fortes.
Fournit un aperçu des techniques d'optimisation, en se concentrant sur la descente de gradient et les propriétés des fonctions convexes dans l'apprentissage automatique.
Explore les bases de l'optimisation telles que les normes, la convexité et la différentiabilité, ainsi que les applications pratiques et les taux de convergence.