Discute des arbres de régression, des méthodes d'ensemble et de leurs applications dans la prévision des prix des voitures d'occasion et des rendements des stocks.
Couvre la régression linéaire et pondérée, les paramètres optimaux, les solutions locales, l'application SVR et la sensibilité des techniques de régression.
Couvre les Perceptrons multicouches, les neurones artificiels, les fonctions d'activation, la notation matricielle, la flexibilité, la régularisation, la régression et les tâches de classification.
Couvre les modèles linéaires, y compris la régression, les dérivés, les gradients, les hyperplans et la transition de classification, en mettant laccent sur la minimisation des risques et des mesures dévaluation.
Introduit les bases de l'apprentissage automatique supervisé, couvrant les types, les techniques, le compromis biais-variance et l'évaluation du modèle.