Explore la régression linéaire dans une perspective d'inférence statistique, couvrant les modèles probabilistes, la vérité au sol, les étiquettes et les estimateurs de probabilité maximale.
Introduit une estimation de la probabilité maximale pour l'estimation des paramètres statistiques, couvrant le biais, la variance et l'erreur carrée moyenne.
Couvre les tests de ratio de vraisemblance, leur optimalité et les extensions dans les tests d'hypothèses, y compris le théorème de Wilks et la relation avec les intervalles de confiance.
Explorer les distributions d'échantillonnage, les propriétés des estimateurs et les mesures statistiques pour les applications de la science des données.
Il explore la construction de régions de confiance, les tests d'hypothèse inversés et la méthode pivot, en soulignant l'importance des méthodes de probabilité dans l'inférence statistique.