Couvre les opérations matricielles, les transformations de Fourier, les modèles gaussiens et les représentations de signaux en utilisant des méthodes algébriques.
Couvre la définition et le fonctionnement des polynômes, y compris l'addition et la multiplication, le degré, les coefficients et leur rôle dans les systèmes algébriques.
Couvre les concepts d'homéomorphismes locaux et de couvertures en multiples, en mettant l'accent sur les conditions dans lesquelles une carte est considérée comme un homéomorphisme local ou une couverture.
Explore la simulation numérique de problèmes constants de convection-diffusion, de discrétisation, de conditions aux limites et d'assemblage de systèmes algébriques.